Signal propagation in small-world biological networks with weak noise.
نویسندگان
چکیده
An emerging notion in systems biology is that biological networks have evolved to function well while their components behave stochastically. Thus, the dynamics in a biological network consist of two parts, deterministic and stochastic. A fundamental question is to find a quantitative relation between the two parts. We term such a relation as a deterministic-stochastic principle (DSP) and propose a model for a DSP with regard to signal propagation in biological networks. In this model, (i) the dynamics in a biological network is supposed to be captured by a stochastic differential equation which has been a standard approach in modeling systems with internal noise; (ii) the internal noise of a biological network is weak as is apparent in experimental observations; and (iii) a biological network is organized as small-world as suggested by recent studies. We introduce the concept of a signaling sample path. Using this concept we relate the structure of a biological network to its dynamics. The network structure characterizes the deterministic part of the dynamics, which in turn ensures a probability for a signal to propagate. The weakness of the internal noise characterizes the stochastic part of the dynamics. Analysis of the proposed model yields a quantitative description as follows: In a small-world biological network with weak internal noise, the signaling pathways (induced by the network structure) for a signal may ensure a probability near 0 for the signal propagation. Despite such a small probability, a correct response to the signal will still occur with a probability close to 1 provided that this signal propagation can take a certain amount of time. Computer simulations are performed to illustrate this result. We also discuss how a recent study on the reconstruction of a transcription network in Saccharomyces cerevisiae has tested the proposed model against real data.
منابع مشابه
Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving
a r t i c l e i n f o a b s t r a c t We study the phenomenon of stochastic resonance on Newman–Watts small-world networks consisting of biophysically realistic Hodgkin–Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, th...
متن کاملDesign of robust carrier tracking systems in high dynamic and high noise conditions, with emphasis on neuro-fuzzy controller
The robust carrier tracking is defined as the ability of a receiver to determine the phase and frequency of the input carrier signal in unusual conditions such as signal loss, input signal fading, high receiver dynamic, or other destructive effects of propagation. An implementation of tight tracking can be understood in terms of adopting a very narrow loop bandwidth that contradict with the req...
متن کاملWeak signal propagation through noisy feedforward neuronal networks.
We determine under which conditions the propagation of weak periodic signals through a feedforward Hodgkin-Huxley neuronal network is optimal. We find that successive neuronal layers are able to amplify weak signals introduced to the neurons forming the first layer only above a certain intensity of intrinsic noise. Furthermore, we show that as low as 4% of all possible interlayer links are suff...
متن کاملDesign and Fabrication of a 911 GHz Balanced Low Noise Amplifier Using HJFET
This paper describes the design of an X-band balanced low noise amplifier (LNA) using an available HJFET device. The balanced LNA consists of a pair of electrically similar transistors whose input and output signals are divided or combined by 3 dB two-stage Wilkinson power dividers. The proposed balanced LNA is fabricated and measured. The measured results show that the noise figure is 1.30 dB ...
متن کاملAutaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks
We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman–Watts small-world network consisting of stochastic Hodgkin–Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 262 2 شماره
صفحات -
تاریخ انتشار 2010